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In order to solve with high accuracy the incompressible Navier-Stokes equations
in geometries of high aspect ratio, one has developed a spectral multidomain algo-
rithm, well adapted to the parallel computing. In cases of 2D problems, a Chebyshev
collocation method and an extended influence matrix-technique are used in each sub-
domain, to solve the generalized Stokes problem which results from the discretization
in time. The continuity conditions, needed at the interfaces of each subdomain, are
computed by using again an influence matrix, the setup of which ensures all the
necessary compatibility conditions, especially the incompressibility. This work is
also described for 3D problems with one homogeneous direction. A study of accu-
racy versus the number of subdomains is presented, as well as an example of an
application concerned with Rayleigh–B´enard convection in a cavity of large aspect
ratio. c© 1998 Academic Press

1. INTRODUCTION

Some physical problems require the accurate solution of the incompressible Navier–
Stokes equations in geometries of high aspect ratio. As a matter of example, double diffusive
convection in a tank of great height can be affected with instabilities that do not occur if the
height is not large enough. Another problem of interest that requires such kinds of geometries
is the study of the spatial development of wakes behind an obstacle. To this aim, we first
developed a 2D Chebyshev multidomain parallel solver and this work was extended to the
treatment of 3D geometries with one homogeneous direction. The multidomain approach
is implemented along the direction of great length.

As it is well known, many approaches are possible for the approximation of the Navier–
Stokes equations. Especially, one can use the so-calledprojection methods, as e.g. de-
scribed in [1–4], or the two steps method described in [5], when restricting ourselves to the
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Chebyshev (or Legendre) spectral methods. Nevertheless, such approaches are often used
to bypass the so-called generalized Stokes problem (GSP) which naturally results from the
unsteady Stokes or Navier–Stokes equations, when using in time a finite difference scheme
treating more or less implicitly the linear diffusion term and explicitly the nonlinear one,
as generally done with spectral methods. Indeed, in nonperiodic geometries, solving the
GSP is not a trivial task. Especially, approaches based on the direct solution of the so-called
Uzawa operator to compute the pressure are generally not realistic, owing to memory stor-
age requirements. This is the reason why iterative procedures are usually preferred, as e.g.
in [6, 7], but the obtention of a satisfactory convergence rate is not straightforward.The
monodomain GSP solver used in this work is briefly described in Section 2. It makes use
of a spectral collocation method (see, e.g. [8]) based on an “extended influence matrix”
technique, yielding the pressure, as well as the collocation error at the boundary, as first
described in [9, 10]. The main advantage of such an approach is the obtention of the exact
solution of the discrete form of the GSP, when its main drawback lays in its memory stor-
age requirement. Moreover, owing to the use of the same grids and same polynomial vector
spaces for the approximations of the velocity components and of the pressure, the latter is
affected with spurious modes, as e.g. mentioned in [11]. For this reason, we also describe
in Section 2 an algorithm to recover (when necessary) the pressure in a satisfactory way.

The multidomain procedure is considered is Section 3. Essentially, it is a nonoverlapping,
patching, and direct method (based on an influence matrix technique) that is used for
the computation of the velocity at the interfaces of the subdomains [8]. Once knowing
the velocity at the boundary of each subdomain, one uses the monodomain GSP solver
in each and finally derives the complete velocity field. As usual with patching methods,
the continuity of the velocity at the interfaces is enforced strongly, as e.g. in [12] or in
[13] (where an overlapping procedure is used). Such patching approaches differ from the
variational approaches which generally only require theC0 continuity of the velocity (see,
e.g. [14, 15]). The method is direct, since it uses an influence matrix technique to compute
the interface values (as in [12], where only one direction is nonhomogeneous). Such direct
approaches are very efficient, but clearly require a sufficiently small number of interface
collocation points. In other contexts, iterative procedures become necessary (as, e.g. in
[16, 14]). In the framework of the vorticity-stream function formulation of the 2D Navier–
Stokes equations, the use of an influence matrix technique is also suggested in [17–19].
But when using the velocity–pressure formulation the setup of this matrix is more complex,
owing to the incompressibility constraint. In our approach compatibility conditions must
be considered to preserve the main property of the monodomain solver, the divergence-free
feature of the computed velocity. The approach makes intensive use of this property and
utilizes original bases for spanning the interface velocity components.

The last section of this paper presents numerical results obtained on a CRAY T3D (or
T3E) supercomputer. First, a study of accuracy is done by considering a GSP for which
an analytical solution is known. Then we show the results of the numerical experiments
concerned with 2D and 3D Rayleigh–B´enard convection in a cavity of aspect ratio equal to 8.

2. MONODOMAIN ALGORITHM

Let us consider the incompressible Navier–Stokes equations in a rectangular domainÄ

of boundary0 and assume admissible Dirichlet boundary conditions for the velocity. When
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using in time an implicit (or semi-implicit) approximation of the diffusion term and an
explicit one for the convection term, at each time step the GSP

1V − σV = ∇ p + f in Ä (1)

∇ · V = 0 in Ǟ (2)

V|0 = V0 (3)

has to be solved, with̄Ä for the closure ofÄ and whereV stands for the velocity,p is for the
pressure times the Reynolds number, andf is for a given body force term. The parameter
σ is proportional to the ratio of the Reynolds number to the time step and depends on the
scheme used for the discretization.

2.1. “Extended Influence Matrix” Technique

As is well known, as soon as the pressure and the body-force term are smooth enough,
the problem (1)–(3) is equivalent to

1V − σV = ∇ p + f in Ä (4)

1p + ∇ · f = 0 in Ä (5)

∇ · V|0 = 0 (6)

V|0 = V0. (7)

Then the difficulty comes from the fact that no boundary conditions are available for
the pressure. But this difficulty can be overcome by splitting the problem (4)–(7) into two
problems [20],

1V1 − σV1 = ∇ p1 + f in Ä (8)

1p1 + ∇ · f = 0 in Ä (9)

p1|0 = 0 (10)

V1|0 = V0 (11)

and

1V2 − σV2 = ∇ p2 in Ä (12)

1p2 = 0 in Ä (13)

p2|0 =M−1
(−∇ · V1|0

)
(14)

V2|0 = 0 (15)

whereM is an “influence operator” defined by

Mp2|0 = ∇ · V2|0 (16)



                

362 SABBAH AND PASQUETTI

in such a way that

∇ · V1|0 + ∇ · V2|0 = ∇ · V|0 = 0. (17)

In Eq. (14)M−1 is a generalized inverse of the operatorM, since the pressure can only
be defined up to a constant. After discretization, the operatorM is the so-called influence
matrix. It is built during a preliminary calculation, by solving a set of elementary problems
similar to the problem (12)–(15), but withp2|0 given. Thus, when using a collocation
method, the boundary values ofp2 are successively taken as unitary at the different boundary
nodes to constitute the different columns of the influence matrix.

Such a splitting approach partially fails in the sense that the resulting velocity field is
not perfectly divergence-free. Since [9, 10] this failure is well understood, the momentum
equation (4) being not collocated at the boundary, the body force term of the Poisson
equation (5) is polluted by an extra term that prevents from obtaining the desired result.
Moreover, as shown in [10], where the tau method (see, e.g. [8]) is also investigated, this
failure is not specific to the collocation method.

In order to outline this point and to briefly present the “extended influence matrix tech-
nique” (see [21] for an extensive presentation), let us assume thatÄ = ]−1, 1[2 (using a
mapping if necessary) and introduce the(I + 1)× (J + 1) Gauss–Lobatto mesh associated
with the Chebyshev polynomials:

ǞI ,J =
{

cos

(
π i

I

)
, cos

(
π j

J

)}
, 0 ≤ i ≤ I ; 0 ≤ j ≤ J, (18)

ÄI ,J =
{

cos

(
π i

I

)
, cos

(
π j

J

)}
, 0 < i < I ; 0 < j < J, (19)

0I ,J = ǞI ,J\ÄI ,J . (20)

Then, withPI ,J the vector space of the polynomials of maximum degreeI in x and J in
y, the Chebyshev collocation method consists in findingV in (PI ,J)

2 and p in PI ,J such
as

1V − σV = ∇ p + f in ÄI ,J (21)

∇ · V = 0 in ǞI ,J (22)

V|0I ,J = V0I ,J . (23)

Here we notice that Eq. (22) implies thatV is perfectly divergence-free, since a poly-
nomial in PI ,J which vanishes at(I + 1)(J + 1) collocation points is the null polyno-
mial. Moreover, the boundary condition (23) is assumed admissible; i.e, the polynomial
interpolants ofV0|0I ,J at each side of̄Ä are compatible with the incompressibility con-
straint.

In order to take into account the error that occurs in the momentum equation, let us now
introduce an additive unknown termτ , in (PI ,J)

2 such that

τ = 0 in ÄI ,J (24)
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and rewrite the following new version of system (4)–(7):

1V − σV = ∇ p + f + τ in ǞI ,J (25)

1p + ∇ · f + ∇ · τ = 0 in ÄI ,J (26)

∇ · V|0I ,J = 0 (27)

V|0I ,J = V0I ,J . (28)

The “extended influence matrix” algorithm is based on the splitting of problem (25)–(28),

1V1 − σV1 = ∇ p1 + f + τ 1 in ǞI ,J (29)

1p1 + 1 · f = 0 in ÄI ,J (30)

p1|0I ,J = 0 (31)

V1|0I ,J = V0I ,J (32)

and

1V2 − σV2 = ∇ p2 + τ + τ 2 in ǞI ,J (33)

1p2 + ∇ · τ = 0 in ÄI ,J (34)

{p2|0I ,J , τ |0I ,J } =M−1{−∇ · V1|0I ,J , −τ 1|0I ,J } (35)

V2|0I ,J = 0, (36)

whereτ 1 andτ 2 are the collocation errors which occur at the boundary nodes, where the
momentum equations are not enforced (N.B.,τ 1 andτ 2 can only be computeda posteriori).
M is now an influence matrix (andM−1 is a generalized inverse) defined by

M{p2|0I ,J , τ |0I ,J } = {∇ · V2|0I ,J , τ
2|0I ,J } (37)

in such a way that

∇ · V1|0I ,J + ∇ · V2|0I ,J = ∇ · V|0I ,J = 0 (38)

τ 1|0I ,J + τ 2|0I ,J = 0. (39)

As presented here the dimension of the influence matrixM appears to be very large. But,
in fact, this dimension can be drastically decreased because it is only the normal component
of τ that is required to compute∇ · τ in ÄI ,J . If we denote byτ the normal componant
(to the boundary) ofτ and if we consider thatp2|0I ,J = p|0I ,J , then the influence matrix
effectively involved in the computation is such that

M{p|0I ,J , τ |0I ,J } = {∇ · V2|0I ,J , τ
2|0I ,J }. (40)

Moreover, the collocation method does not need the values ofp andτ at the four corners
of the domain and so it only needs these values at 2(I + J − 2) boundary nodes. The
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dimension of the extended influence matrix is then 4(I + J − 2), i.e. twice larger than the
usual influence matrix. It can be set up in a preliminary calculation by solving the elementary
problems associated with the canonical basis of the vector spaceR4(I +J−2) for the boundary
node values ofp2 andτ in Eqs. (33) and (34). Once the influence matrix is calculated, one
has to invert it, but as outlined later in the text one has a rank deficiency equal to four.
One way to proceed is to compute the eigenvalues and then replace the four zero values
by nonnull values, in order to project the solution onto the orthogonal complement of the
kernel. Contrary to what is mentioned in [22], where one suggests using infinite values, the
nonnull values can be arbitrary, without any incidence onp|0I ,J andτ |0I ,J .

Finally, the algorithm is the following:

—solve the problem (29)–(32) and, once knowing the velocity and pressure fieldsV1

and p1, compute the values of∇ · V1|0I ,J andτ 1|0I ,J ;
—from Eq. (35) compute the boundary values of the pressurep|0I ,J and of the correction

termτ |0I ,J ;
—solve the problem (25)–(28) using the prescribed values ofp|0I ,J andτ |0I ,J .

Remark. The initial problem (21)–(23) only requires the knowledge off in ÄI ,J , on the
contrary of the approach, based on the standard influence matrix technique. This property
is recovered when using the extended influence matrix approach, since the error termτ

permits us to assume arbitrary values off at the the boundary nodes. Thus, one can simply
assumef |0I ,J = 0.

2.2. Calculation of the Pressure

The advantage of assumingp in PI ,J is that a divergence-free velocity fieldV can effec-
tively be produced, but this advantage goes with the drawback that the pressure is affected
with spurious modes [23]. WithTi (x) = cosi (cos−1 x) for the Chebyshev polynomial of
degreei , these spurious modes are:

—the constant modeT0(x)T0(y) = 1, which is physical, since the pressure is defined up
to a constant,

—the column modeTI (x)T0(y) = TI (x),
—the line modeT0(x)TJ(y) = TJ(y),
—the checkerboard modeTI (x)TJ(y).

The nonphysical spurious modes result from the definition of the Gauss–Lobatto mesh
(Eq. (18)) for which(1−x2)(1−y2)T ′

I (x)T ′
J(y) = 0 (with a prime for the first-order deriva-

tive). Moreover, since the corner values of the pressure are not required by the algorithm
so they can be arbitrary, one has also:

—the four corner modes.

In the framework of the “extended influence matrix technique” the spurious modes of
pressure are associated with spurious modes ofτ . Indeed, from Eqs. (25) and (26), it is
clear that the spurious partspsp andτ sp of p andτ verify the set of equations [22]:

∇ psp + τ sp = 0 in ǞI ,J (41)

τ sp|ÄI ,J = 0 (42)

1psp + ∇ · τ sp = 0 in ÄI ,J . (43)
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Then,

—τ sp = (0, 0),
—τ sp = (−T ′

I (x), 0),
—τ sp = (0, −T ′

J(y)), and
—τ sp = (−T ′

I (x)TJ(y), −TI (x)T ′
J(y))

are respectively associated with the constant, column, line, and checkerboard modes. The
restictions to the boundary of these four spurious couples constitute a basis of the influ-
ence matrix kernel. Consequently,M has a rank deficiency equal to four, as mentioned in
Section 2.1.

Remark. When using the standard influence matrix approach, the Poisson equation (43)
for psp becomes homogeneous and is no longer verified by the nonphysical spurious modes.
The dimension of the kernel of the standard influence matrix then equals one.

How can we recover the pressure field? The natural idea is to filter the nonphysical modes,
but more problematic is the question of the corner modes, since vanishing the pressure at
the four corners of the domain is clearly not physical. Let us first assume that the values
pl , 1 ≤ l ≤ 4, of the pressure at the corners are known. Then, in the Chebyshev spectral
space the spurious modes can be cancelled, in order to get the filtered pressure fieldp′,
which depends on thepl . The natural idea is then to produce a smooth pressure field. This
can be achieved by solving the following optimization problem: find thepl such that the
functional

J(pl ) =
∑
ǞI ,J

|∇ p′|2 (44)

is minimal. But inÄI ,J the gradient of the pressure does not depend on the pressure spurious
modes, so that the functional can be rewritten in the simpler form,

J(pl ) =
∑
0I ,J

|∇ p′|2. (45)

This optimization problem can be easily solved after noticing thatp can read

p = p0 +
∑

l

pl Cl , (46)

wherep0 is the initial pressure field with zero values at the corners and where theCl are
the polynomials which vanish everywhere in̄ÄI ,J , except at the corners where they take
unitary values. After filtering the four spurious modes one gets

p′ = p′
0 +

∑
l

pl C
′
l , (47)

∇ p′ = ∇ p′
0 +

∑
l

pl ∇C′
l , (48)

where the∇C′
l vanish inÄI ,J . It is then easy to express∇ p′|0I ,J in terms of thepl and to

compute thesepl by using a standard least square method.
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2.3. Extension to 3D Geometries with One Homogeneous Direction

When assuming that thez direction is homogeneous a discrete Fourier expansion of the
different variables can be used along this direction. Then, the 3D problem decouples into
a set of 2D complex problems. Namely, for each mode numberk, 0 ≤ k ≤ K , one gets
the following system of equations that must solve the Fourier spectra (denoted by ˆ.k) of the
different variables,

1kV̂k − σV̂k = ∇k p̂k + f̂ k + τ̂ k in ǞI ,J (49)

1k p̂k + ∇k · f̂ k + ∇k · τ̂ k = 0 (50)

∇k ·V̂k|0I ,J = 0 (51)

V̂k|0I ,J = V̂k0I ,J , (52)

where1k = ∂xx + ∂yy − k2 and∇k = (∂x, ∂y, ik), with i for the square root of−1. For
each mode number one can apply the extended influence matrix algorithm and thus obtain
a set of influence matricesMk, such that

Mk{ p̂k|0I ,J ,τ̂k|0I ,J } = {∇k ·V̂2
k|0I ,J , τ̂

2
k |0I ,J

}
. (53)

These influence matricesMk are real; they associate the real (imaginary) parts of

{ p̂k|0I ,J , τ̂k|0I ,J } to the real (imaginary) parts of{∇k · V̂
2
k|0I ,J , τ̂

2
k |0I ,J }.

Finally, one has to mention that fork 6= 0, the influence matrices are regular. This results
from the fact that ifp̂k does not vanish inÄI ,J , then∇k p̂k is also nonnull inÄI ,J . On the
contrary, ifk = 0 the 2D situation and the spurious modes of pressure are recovered.

3. MULTIDOMAIN APPROACH

In this section we present a multidomain approach, based on the use of the monodomain
solver which has just been presented, to solve the GSP with the no-slip boundary condition.
First we begin with the 2D case, by considering for the domainÄ a rectangle of large aspect
ratio. This domainÄ is splitted, versus the direction of great length (x direction) into a set
of N subdomainsÄn. The interface between the subdomainsÄn andÄn+1 is denoted byIn.
At the intersections ofIn and of the boundary0 of Ä, one has the pointsAn andBn in such
a way thatÄn, of boundary0n, is the squareAn−1, An, Bn, Bn−1. Moreover we assume the
use of matching grids: for alln, the number of collocation points between the pointsAn

andBn is equal to (J − 1).

3.1. Interface Conditions

With V = (u, v) and v · bn for the jump at the interfacesIn, the essential and natural
continuity conditions that the PDE (1) induces to use at these interfaces read:

vubn = vvbn = v∂xu − pbn = v∂xvbn = 0. (54)
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Nevertheless, when taking into account that the velocity is divergence-free, the first, second,
and fourth conditions imply thatu is C2-continuous:

v∂xubn + v∂yvbn = v∂xubn = 0 (55)

v∂xxubn + v∂xyvbn = v∂xxubn = 0. (56)

It results that in the case of incompressible fluids the interface conditions read:

vubn = vvbn = vpbn = v∂xvbn = 0. (57)

Let us go to the discrete framework. When using the approach described in Section 2, the
previous interface conditions should still hold, because the approximate velocity field is
also perfectly divergence-free. But the spurious modes of pressure prevent the use of the
third condition, i.e. the one involving the pressure jump.

In order to overcome this difficulty, we first tried to enforce theC2 continuity ofv rather
than theC0 continuity of p, i.e. to substitute for the conditionvpbn = 0 the one,v∂xxvbn = 0.
Such an approach is quite satisfactory for solving a GSP and even the nonstationary Navier–
Stokes equations at low Reynolds numbers. Unfortunately, when the Reynolds number is
increased, oscillations of the solution generally occur at the interfacesIn and then amplify,
until inducing numerical instability.

The way that we suggest and use now successfully, consists in a weak formulation
of the interface conditionvpbn = 0. This permits us to overcome efficiently the problem
of the spurious modes of pressure, without inducing any deterioration of the solution at
the interfacesIn. For the sake of clarity, this weak formulation of the pressure continuity
condition will be detailed in Subsection 3.3, after the description of the influence matrix
technique that is used in our multidomain approach.

Remark. The interface conditions (57) induce theC0 continuity of the vorticity,
ω = ∂xv − ∂yu.

3.2. Influence Matrix Technique

Let us split the GSP into two sets ofN monodomain problems,P1
n andP2

n . For the first
set, one assumes for each subdomain homogeneous Dirichlet boundary conditions and one
takes into account the body-force term:

ProblemsP1
n read:

1V1 − σV1 = ∇ p1 + f in Än (58)

∇ · V1 = 0 in Ǟn (59)

V1|0n = 0. (60)

Once this first set of problems is solved the jumpsvp1bn andv∂xv
1bn can be computed.

For the second set of problems, one uses at the interfacesIn, 1≤ n ≤ (N − 1), the nonho-
mogeneous Dirichlet conditions(u2, v2)|In , which ensure the interface conditions, i.e. such
that for alln,

vp1bn + vp2bn = 0 (61)
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v∂xv
1bn + v∂xv

2bn = 0. (62)

ProblemsP2
n read:

1V2 − σV2 = ∇ p2 in Än (63)

∇ · V2 = 0 in Ǟn (64)

V2|0n = V0n . (65)

ThenV1 + V2 is the solution of the complete problem.
Thanks again to the linearity property of the GSP, in order to determine the appropriate

values of(u2, v2)|In , in fact equal to(u, v)|In , a new influence matrixM can be introduced
such that

M{∪(u, v)|In} = {∪(vp2bn, v∂xv
2bn)} (66)

with ∪ for union overn (1 ≤ n ≤ (N − 1)).
The influence matrixM is clearly block tridiagonal, since if the velocity is only nonnull

at the interfaceIn, then the jumpsvpbn andv∂xvbn are only nonnull at the interfacesIn, In+1,
andIn−1 (when they exist). Three blocks (at most) are thus associated with the interfaceIn.
The aim is to set up these blocks, but such a task needs some attention as outlined now.

In the discrete framework, the couple(u, v)|In cannot take arbitrary values inR2(J−1),
since constraints, especially coming from the incompressibility and compatibility conditions
at the “corners”An and Bn, must be taken into account. This results in the fact that, to
the contrary of what was done for the computation of the influence matrixM, here one
cannot simply solve elementary problems associated with the canonical basis ofR2(J−1),
since they would involve nonadmissible boundary conditions and so would be ill-posed.
The elementary problems must now be associated with an appropriate basis, spanning the
admissible values of (u, v) at the interface. The compatibility constraints result from the
no-slip condition

u(An) = u(Bn) = v(An) = v(Bn) = 0 (67)

and from the continuity equation

∂yv(An) = ∂yv(Bn) = 0. (68)

The constraints of incompressibility read:∫
In

u dy = 0, (69)

u |In ∈ PJ−1. (70)

This last constraint results from the fact that the polynomials∂xu and∂yv must take their
values in the same polynomial vector space, so that their sum can identically vanish. This
vector space, at the intersection ofPI −1,J and PI ,J−1, is PI −1,J−1. It derives that actually
u ∈ PI ,J−1 and thatv ∈ PI −1,J .
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Let us first produce a basis foru|In . When knowing that

Tj (±1) = (±1) j (71)∫ 1

−1
Tj (y) dy = −2

j 2 − 1
, j even; 0 if j is odd, (72)

one can introduce the set of (J −3) polynomialsej (y) of degreej , such that 3≤ j ≤ J −1:

1. j odd andj ≥ 3,

ej (y) = Tj (y) − T1(y) (73)

2. j even andj ≥ 4,

ej (y) = Tj (y) − αT2(y) − β, (74)

where

α = 3 j 2

4( j 2 − 1)
, β = j 2 − 4

4( j 2 − 1)
. (75)

The polynomialsej (y) verify the constraints (67), (69), and (70), are clearly nonlinearly
dependent and their number (J − 3) equals the number of degrees of freedom (J + 1),
decreased by the four constraints.

Let us now produce a basis forv|In . With (71) and knowing that

T ′
j (±1) = j 2(±1) j +1, (76)

the following set of (J − 3) polynomials of degreej , 4 ≤ j ≤ J, is well suited:

1. j odd andj ≥ 5,

ej (y) = Tj (y) − αT1(y) − βT3(y), (77)

where

α = 9 − j 2

8
, β = j 2 − 1

8
; (78)

2. j even andj ≥ 4,

ej (y) = Tj (y) − αT0(y) − βT2(y), (79)

where

α = 1 − j 2

4
, β = j 2

4
. (80)
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The polynomialsej (y) now verify the constraints (67) and (68) and constitute an appropriate
basis forv|In .

In order to compute the components ofu|In andv|In in the bases that have just been
defined, if appears that only 2(J − 3) relations are prescribed from Eqs. (61) and (62). This
may be surprising, since the number of collocation points betweenAn and Bn is equal to
(J − 1). Concerning the continuity of the pressure, it is shown in the next subsection that
the weak formulation of the pressure jump only yields (J − 3) relations. Concerning theC1

continuity ofv, (J − 3) relations are only required, as explained below.
At the “corners” An and Bn one has the following compatibility conditions, resulting

from the no-slip boundary condition and from the continuity equation:

∂yxv(An) = ∂yxv(Bn) = 0. (81)

These compatibility conditions permit us, in the discrete framework, to calculate the values
of ∂xv at two collocation points, once we know their values at the (J − 3) other ones. It
results that Eq. (62) has only to be expressed at (J − 3) collocation point. Thus, we do not
consider the collocation points nearest toAn andBn. Consequently, the influence matrixM
in Eq. (66) is square, each of its block being of dimension 2(J − 3), and in this equation
(u, v)|In must be viewed as the components ofu|In andv|In in their specific bases.

3.3. Weak Formulation of the Pressure Continuity Condition

When restricted to an interfaceIn, vpbn is a polynomial inPJ , affected by the following
spurious modes of pressure:

—T0(y) = 1 (the constant physical mode)
—TJ(y)

—the An andBn “corner” modes, i.e. the two polynomials which vanish at all the collo-
cation points of the interfaceIn, except at the pointsAn and Bn, where they take unitary
values.

Let us introduce the following weak formulation of the conditionvpbn = 0:

1. j odd andJ > j ≥ 3, ∫
In

vpbn(Tj (y) − T1(y)) dµ = 0 (82)

2. j even andJ > j ≥ 4,∫
In

vpbn(Tj (y) − T2(y)) dµ = 0 (83)

where

dµ = (1 − y2)−1/2dy. (84)

With such a measure the chebyshev polynomials are orthogonal. Consequently, the spu-
rious part ofvpbn spanned by the polynomialsTJ(y) andT0(y) is cancelled. Moreover, the
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weighting functions are also orthogonal to the pressure corner modes, because they van-
ish at pointsAn andBn from property (71). This can be checked from the Gauss–Lobatto
quadrature formula, which is exact for polynomials of degree up to (2J −1) (see, e.g. [23]).

Thus, formulas (82) and (83) constitute a set of (J − 3) equations expressing a weak
formulation of the interface conditionvpbn = 0 and got rid of the spurious modes of pressure
(including the physical constant mode). From the Gauss–Lobatto quadrature formula, it
reads

J−1∑
m=1

vpbn(ym)(Tj (ym) − Tl (ym)) = 0, 3 ≤ j < J, (85)

with l = 1 if j is odd andl = 2 if j is even. Knowing thatTj (ym) = cos(π jm/J), this
set of equations can be expressed in matrix form by introducing a matricial operatorH of
dimension(J − 3) × (J − 1), the elements of which can be easily identified as

Hj −2,m = cos

(
π jm

J

)
− cos

(
π lm

J

)
, (86)

where 3≤ j < J and 1≤ m ≤ J − 1.

3.4. Extension to 3D Geometries with One Homogeneous Direction

With V̂k = (ûk, v̂k, ŵk), for the spectrum ofV, let us first consider the casek = 0 which
is very similar to the 2D situation.

If k = 0, the operator∇k reads∇0 = (∂x, ∂y, 0). Then, considering again the GSP, one
observes that the equation for ˆw0 is not coupled to the equations forû0 and v̂0. One can
thus apply for̂u0 andv̂0 the approach used previously in the 2D situation and consider inde-
pendently the variable ˆw0 which solves an elliptic Helmholtz equation. In the multidomain
context, the natural procedure is then to enforce theC1 continuity at the interfaces. This is
done by using a block tridiagonal influence matrixM ′

0 such that

M ′
0{∪(ŵ0)|In} ={∪(v∂xŵ

2
0bn

)}
. (87)

The different blocks of this influence matrix can be built easily in a preliminary calculation
by solving for each interfaceIn the elementary problems associated with the canonical basis
of RJ−1. Then, one computes ˆw0 in two steps: the first one considers in each subdomain
homogeneous boundary conditions and the second one takes into account the values of ˆw0

at the interfaces.

Remark. When an advection-diffusion equation is associated to the Navier–Stokes equa-
tions, e.g. for the temperature, at each time step one has to associate to the GSP an elliptic
Helmhotz equation. This elliptic Helmholtz equation can be solved (for all mode numbers,
in the 3D situation considered in this section) as it has just been described for ˆw0.

Let us now consider the casek 6= 0, which is less staightforward. The interface conditions
that must be enforced are theC0 continuity ofûk and p̂k, without the requirement of a weak
formulation, and theC1 continuity of v̂k and ŵk. But as in the 2D case, one can easily
observe that the continuity equation induces thatûk is actuallyC2 continuous. It derives
that the vorticity vector and stress tensor spectra areC0 continuous.
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Thus, in 3D with one homogeneous direction, we are led to introduce influence matrices
Mk, such that

Mk{∪(ûk, v̂k, iŵk)|In} ={∪(v∂xv̂
2
kbn, v∂x iŵ2

kbn, v p̂2
kbn

)}
. (88)

One notices that the variable i ˆwk is used in such a way that all the operators of the GSP
become real. Consequently, the matricesMk are also real and the determinations of the real
and imaginary parts of{∪(ûk, v̂k, iŵk)|In} are not coupled. As the matrixM (andM ′

0), the
matricesMk are block tridiagonal, with three blocks associated with each interfaceIn.

As in the 2D situation, the problem is now to set up these blocks, but no new difficulty
arises and, on the contrary, one difficulty falls. Similarly to the 2D case (Eqs. (67) and (68)),
one has some constraints which result from the no-slip condition, expressed at the corners,

ûk(An) = ûk(Bn) = v̂k(An) = v̂k(Bn) = ŵk(An) = ŵk(Bn) = 0, (89)

and from the continuity equation,

∂yv̂k(An) = ∂yv̂k(Bn) = 0. (90)

But to the contrary of the 2D situation, the incompressibility constraints (69) and (70) no
more exist, since

—the velocity fields associated with the mode numbersk 6= 0 automatically satisfy
Eq. (69),

—in the spectrum of∇ · V the termikŵk which is in PI ,J now appears.

One observes that̂uk|In andŵk|In are simply polynomials inPJ which vanish at points
An and Bn. In this case using the basis (73), (74) is useless and one simply considers the
elementary problems associated with the canonical basis ofRJ−1. For v̂k|In the constraints
are the same as the ones met in the 2D situation, so that the basis (77), (79) has to be used
and in Eq. (88) ˆvk|In must be viewed in this basis. On the other hand, similarly to Eq. (81)
one has the compatibility conditions

∂yxv̂k(An) = ∂yxv̂k(Bn) = 0 (91)

which state that the collocation point values of∂x v̂k can only be arbitrary atJ−3 collocation
points, so that the continuity of∂x v̂k should not be imposed everywhere. We do not collocate
these equations at the points nearest of the boundary. If results that the dimension of each
block of influence matricesMk is (3J − 5).

4. NUMERICAL TESTS

In order to check the capabilities of the present Stokes solver, two studies have been
carried out. In the first one which considers the Stokes problem (1)–(3) in a cavity of aspect
ratio equal to 16, our aim is to produce some quantitative results when varying the mesh
refinement and the subdomain number. The second considers a Rayleigh–B´enard problem
in a cavity of aspect ratio equal to 8.
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4.1. Stokes Solver Accuracy

At first some analytical fields (V, p) have to be produced. The results obtained from
the Stokes solver will then be compared to them. The analytical velocity field must be
divergence-free, null at the boundary, and homogeneous versus thez-axis. In order to
support these constraints, in the domainÄ = ]0, Lx[×]0, 1[×]0, Lz[, let us introduce the
vector:

ψ = ψ(1, 1, 1), (92)

where

ψ = Cx2(x − Lx)
2y2(y − 1)2 cos(11x) cos(7y)

(
1 + cos

(
6

2π

Lz
z

))
(93)

and define the velocity fieldV as the curl ofψ: V = ∇ × ψ. In (93)C is a normalization
factor chosen to induce max(|V|) ≈ 1.

Concerning the pressure, we assume:

p = 0.5 cos(7x) cos(11y)

(
1 + cos

(
3

2π

Lz
z

))
. (94)

From the analytical forms ofV and p and for a given value of the parameterσ , using the
symbolic calculation (MAPLE software), the analytical expression of the body force term
is derived (see Eqs. (1)–(3)).

All the calculations have been performed for the following set of the different parameters:
Lx = 16, Lz = 6, C = 1/7000, σ = 104, and, concerning the mesh,K = 8, J = {8, 16, 32},
andI = 16J. In fact, the valueJ = 8 is too small to get satisfactory results, whereasJ = 32
yields the machine accuracy for the velocity, except for the highest valueN = 32 subdo-
mains. Moreover, let us emphasize that in the Fourier spectral space only the mode numbers
0, 3, and 6 of the analytical solutions are different from zero, in such a way that forK = 8,
the accuracy defaults can only result from the parametersJ and N. The total number of
collocation points is 2K (J + 1)(I + 1).

The numerical results are given in Tables 1 and 2, where the mean-quadratic and maximal
errors are mentioned for the modulus of the velocity and for the pressure for different couples
(J, N). (N.B., For the couples (2, 32) and (4, 32), the memory requirements were too large
for the T3D processors.)

It is interesting to observe that the errors are slowy increasing withN until the number of
collocations in each subdomain become too small. Indeed, withJ = 16 andN = 32, there

TABLE 1

Mean-Quadratic and Maximal Errors for the Velocity Modulus

N 2 4 8 16 32

J = 16 1.39E-8 1.78E-8 2.03E-8 1.32E-7 1.36E-4
4.88E-8 4.88E-8 4.88E-8 5.45E-7 4.58E-4

J = 32 6.06E-15 4.81E-15 3.42E-12
2.13E-14 2.13E-14 1.43E-11
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TABLE 2

Mean-Quadratic and Maximal Errors for the Pressure

N 2 4 8 16 32

J = 16 1.65E-5 2.37E-5 2.82E-5 4.78E-4 0.44
6.28E-5 6.76E-5 7.71E-5 1.34E-3 0.99

J = 32 1.69E-7 6.01E-6 1.46E-5
1.94E-7 6.87E-6 1.66E-5

are only nine points along thex axis in each subdomain. For smaller values ofN, the error
is essentially governed by the largest value of thex-space step, which does not depend on
the number of subdomains.

One can also observe in Table 2 that the computation of the pressure is rather accurate and
that the spurious mode-cleaning algorithm proposed in Section 2.2 is efficient. Nevertheless,
with J = 16 andN = 32, the results on the pressure are no longer acceptable, whereas the
results for the velocity are still reasonably satisfactory.

Remark1. In some situations, the use of subdomains can improve the accuracy of the
numerical results, especially, when a stiff gradient occurs between two subdomains or if a
subdomain is affected to the approximation of a boundary layer [24]. Consequently, it can
be interesting to match the subdomains with the expected solution.

Remark2. When using for the mode numberk = 0 the interface conditionv∂xxvbn = 0,
rather than the weak formulation ofvpbn = 0, one obtains results very similar to those of
Tables 1 and 2 , as shown in Tables 3 and 4, respectively.

4.2. Rayleigh–B́enard Convection

The multidomain GSP solver described in this paper has been used for solving the
Boussinesq–Oberbeck equations in a 3D cavity such asLx = 8 andLz = 2.8, the gravity
being parallel to they direction. The Rayleigh number is taken Ra= 3000 and the Prandtl
number is the air’s, Pr= 0.71. The boundary and initial conditions are defined below.

Boundary conditions. For the velocity we assume the no-slip boundary condition. For
the temperature, we assume Dirichlet conditions at the bottom and at the top of the cav-
ity, T = 1 andT = 0, respectively, in nondimensional form and homogeneous Neumann
conditions (adiabaticity condition) at the lateral walls.

TABLE 3

Mean-Quadratic and Maximal Errors for the Velocity Modulus

N 2 4 8 16 32

J = 16 1.39E-8 1.78E-8 2.03E-8 3.65E-7 5.83E-3
4.88E-8 4.88E-8 4.88E-8 1.43E-6 3.56E-2

J = 32 9.20E-14 4.50E-14 1.51E-11
2.37E-13 1.55E-13 3.60E-11



               

MULTIDOMAIN SPECTRAL SOLVER 375

TABLE 4

Mean-Quadratic and Maximal Errors for the Pressure

N 2 4 8 16 32

J = 16 1.65E-5 2.37E-5 2.82E-5 8.80E-4 0.66
6.28E-5 6.76E-5 7.71E-5 2.58E-3 1.62

J = 32 1.69E-7 6.01E-6 1.46E-5
1.94E-7 6.87E-6 1.66E-5

Initial conditions. The fluid is assumed to be at rest. The temperature is in the conductive
state, i.e. linearly variable from the bottom to the top of the cavity. But to induce a 3D flow,
this temperature profile is perturbated with the function

ε = −10−3 sin(πy) cos

(
π

0.8

(
x + cos

(
π

1.4
z

)))
. (95)

Such a perturbation, which is periodic inz and which vanishes at the top and at the bottom
of the cavity, induces in the box ]0, 8[×]0, 1[×]0, 2.8[ a set of 10 rolls, the axis of which
are distorted following a sinuso¨ıdal variation of amplitude 1.

The Boussinesq–Oberbeck equations are discretized by using a second-order backward
Euler approximation for the diffusive terms and a second-order Adams–Bashforth extrapo-
lation for the advective terms. This yields, at each time step, a GSP, coupled with an elliptic
Helmholtz equation, for the temperature. This temperature equation is solved at first in such
a way that the body-force term of the momentum equation can be calculated.

For the computation we used eight subdomains and the following mesh in each of them:
16× 16× 48. The time-step was equal to 5× 10−3.

In Fig. 1, where the vertical velocity in the median planez = Lz/2 at different times is vi-
sualized, one observes the transition of the solution with 10 rolls to a solution with 8 rolls for
which the wave number is approximately the critical one. Moreover, it was observed that the
3D flow becomes quickly 2D, so that, despite the initial perturbation of the temperature field,
no 3D instability occurs. Especially as in [25], the skewed varicose instability (see, e.g., [26])
was not observed, probably due to a too strong confinement of the flow. The only instability
that occurs is thus the Eckhaus instability, which results from the interaction of two neighbor-
ing rolls, the wave numbers of which are greater and smaller than the critical wavenumber.

Remark. When using for the mode numberk = 0 the interface conditionv∂xxvbn = 0,
one obtains the same convective flow, the relative differences between the extrema of the
vertical velocity being at mostO(10−5).

The same behavior was obtained for 2D calculations, done on a T3E computer, indepen-
dently of the number of subdomains:N = {2, 4, 6, 8, 10}. For the perturbation of the initial
conductive temperature field we used

ε = −10−3 sin(πy) cos

(
πx

0.8

)
(96)

in order to induce 10 rolls in the cavity. For all the calculations the same transition from 10
rolls to 8 rolls was observed. The quasi-stationary vorticity fields obtained at timet = 20
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FIG. 1. Vertical velocity at timest = 1.2, t = 1.6, t = 2, andt = 2.4 (nondimensional values associated
with the thermal diffusivity).

for the two extrema of the subdomain number are shown in Fig. 2. For all the considered
values ofN, the patterns are identical and the relative differences between the extrema of the
vorticity areO(10−6), after spectral interpolations on a unique regular grid. Moreover, the
transition from 10 to 8 rolls agrees with the selection law obtained in [25], which indicates
that for the present study the only stable patterns should show 7, 8, or 9 rolls.

FIG. 2. Vorticity at timet = 20, computed withN = 2 andN = 10 subdomains.
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FIG. 3. Stream-function at timet = 20, for the three stable patterns.

It was interesting to check if the patterns with 7 and 9 rolls would be obtained with
our multidomain solver. By changing the perturbation of the initial temperature field, these
patterns have effectively been obtained. In order to get the 9 (or 7) roll configuration, we
simply induced such flows by substituting in Eq. (96) the mean width of a roll to the 0.8
value. In Fig. 3 are shown the quasi-stationary stream-function, obtained at timet = 20 , for
the three stable configurations. When one iduces the 6 roll configuration, then one observes
a transition yielding 8 rolls. Thus, for symetry reasons, the 6 and 10 roll configurations
finally yield, with a gain or a loss of two rolls, exactly the same convective flow. For these
calculations we usedN = 8 subdomains.

Remark. In order to have an idea of the CPU time with respect to the number of subdo-
mains, we give in Table 5 the CPU time needed by the most consuming processor for the
preliminary calculations and for the simulation on the base of 1000 time steps. These results
are not really favorable, since the total CPU time, i.e. when taking into account the number
of processors, is nearly the same asN ≥ 4 and even begins to increase forN = 10. Such
poor results were expected for the test-case considered, which does not require many collo-
cation points in each subdomain. In this situation, the CPU time needed by the computation
of the interface velocity values, with exchanges of data between the different processors,

TABLE 5

CPU Time/Processor for the Preliminary Calculations and for 1000 Simulation Time Steps

N 2 4 6 8 10

Prel. 18.57 3.68 1.66 1.00 0.82
Sim. 62.86 22.26 14.46 10.66 9.34



       

378 SABBAH AND PASQUETTI

is relatively important. This is no-more true when fine meshes are required, i.e. when the
multidomain approach is fully justified.

5. CONCLUSION

We have presented a multidomain procedure for solving in 3D cartesian geometries of
high aspect ratio with one homogeneous direction, the generalized Stokes problem (GSP)
which results from the finite difference approximation of the incompressible Navier–Stokes
equations. The main property of this Fourier–Chebychev spectral solver is that the discrete
formulation of the GSP is exactly solved in such a way that the resulting velocity field is
perfectly divergence-free. This is obtained in the following manner:

(i) in each subdomain, extended influence matrices are used to compute the boundary
values of the pressure when taking into account that the equations are only enforced at the
internal collocation points,

(ii) the velocity components at the interfaces of the different subdomains are computed
by using block tridiagonal influence matrices, set up by using appropriate bases in order to
enforce the compatibility conditions resulting from the incompressibility constraint.

Moreover, the problem of the spurious modes of pressure has been revisited and a new
method has been proposed to recover the pressure field.

The computer code has been parallelized for a T3D (T3E) supercomputer and test re-
sults have been produced to outline that no drastic loss of accuracy occurs when the
number of subdomains is increased as soon as the number of collocation points in each
subdomain is sufficiently high. Finally, the capability of the code has been pointed out
by solving a 3D Rayleigh–B´enard problem showing an Eckhaus instability and 2D nu-
merical experiments have been achieved to demonstrate the credibility of the numerical
results.
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