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In order to solve with high accuracy the incompressible Navier-Stokes equations
in geometries of high aspect ratio, one has developed a spectral multidomain algo-
rithm, well adapted to the parallel computing. In cases of 2D problems, a Chebyshev
collocation method and an extended influence matrix-technique are used in each sub-
domain, to solve the generalized Stokes problem which results from the discretization
in time. The continuity conditions, needed at the interfaces of each subdomain, are
computed by using again an influence matrix, the setup of which ensures all the
necessary compatibility conditions, especially the incompressibility. This work is
also described for 3D problems with one homogeneous direction. A study of accu-
racy versus the number of subdomains is presented, as well as an example of an
application concerned with RayleigheBard convection in a cavity of large aspect
ratio. (© 1998 Academic Press

1. INTRODUCTION

Some physical problems require the accurate solution of the incompressible Nav
Stokes equations in geometries of high aspect ratio. As a matter of example, double diffu
convection in a tank of great height can be affected with instabilities that do not occur if
heightis notlarge enough. Another problem of interest that requires such kinds of geome
is the study of the spatial development of wakes behind an obstacle. To this aim, we
developed a 2D Chebyshev multidomain parallel solver and this work was extended to
treatment of 3D geometries with one homogeneous direction. The multidomain appro
is implemented along the direction of great length.

As it is well known, many approaches are possible for the approximation of the Navit
Stokes equations. Especially, one can use the so-cpitgdction methods, as e.g. de-
scribed in [1-4], or the two steps method described in [5], when restricting ourselves to
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360 SABBAH AND PASQUETTI

Chebyshev (or Legendre) spectral methods. Nevertheless, such approaches are often
to bypass the so-called generalized Stokes problem (GSP) which naturally results from
unsteady Stokes or Navier—Stokes equations, when using in time a finite difference sche
treating more or less implicitly the linear diffusion term and explicitly the nonlinear one
as generally done with spectral methods. Indeed, in nonperiodic geometries, solving
GSP is not a trivial task. Especially, approaches based on the direct solution of the so-ca
Uzawa operator to compute the pressure are generally not realistic, owing to memory s
age requirements. This is the reason why iterative procedures are usually preferred, as
in [6, 7], but the obtention of a satisfactory convergence rate is not straightforward.T
monodomain GSP solver used in this work is briefly described in Section 2. It makes L
of a spectral collocation method (see, e.g. [8]) based on an “extended influence matr
technique, yielding the pressure, as well as the collocation error at the boundary, as f
described in [9, 10]. The main advantage of such an approach is the obtention of the e»
solution of the discrete form of the GSP, when its main drawback lays in its memory stc
age requirement. Moreover, owing to the use of the same grids and same polynomial ve
spaces for the approximations of the velocity components and of the pressure, the latte
affected with spurious modes, as e.g. mentioned in [11]. For this reason, we also desc
in Section 2 an algorithm to recover (when necessary) the pressure in a satisfactory we

The multidomain procedure is considered is Section 3. Essentially, it is a nonoverlappil
patching, and direct method (based on an influence matrix technique) that is used
the computation of the velocity at the interfaces of the subdomains [8]. Once knowir
the velocity at the boundary of each subdomain, one uses the monodomain GSP so
in each and finally derives the complete velocity field. As usual with patching method
the continuity of the velocity at the interfaces is enforced strongly, as e.g. in [12] or i
[13] (where an overlapping procedure is used). Such patching approaches differ from
variational approaches which generally only require@Reontinuity of the velocity (see,
e.g. [14, 15]). The method is direct, since it uses an influence matrix technique to comp
the interface values (as in [12], where only one direction is nonhomogeneous). Such dir
approaches are very efficient, but clearly require a sufficiently small number of interfa
collocation points. In other contexts, iterative procedures become necessary (as, e.c
[16, 14]). In the framework of the vorticity-stream function formulation of the 2D Navier-
Stokes equations, the use of an influence matrix technique is also suggested in [17-
But when using the velocity—pressure formulation the setup of this matrix is more comple
owing to the incompressibility constraint. In our approach compatibility conditions mu
be considered to preserve the main property of the monodomain solver, the divergence-
feature of the computed velocity. The approach makes intensive use of this property
utilizes original bases for spanning the interface velocity components.

The last section of this paper presents numerical results obtained on a CRAY T3D
T3E) supercomputer. First, a study of accuracy is done by considering a GSP for whi
an analytical solution is known. Then we show the results of the numerical experimer
concerned with 2D and 3D RayleigheBard convection in a cavity of aspectratio equal to 8.

2. MONODOMAIN ALGORITHM

Let us consider the incompressible Navier—Stokes equations in a rectangular ddmail
of boundant™ and assume admissible Dirichlet boundary conditions for the velocity. Whe
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using in time an implicit (or semi-implicit) approximation of the diffusion term and an
explicit one for the convection term, at each time step the GSP

AV —oV =Vp+f inQ (1)
V.V=0 inQ (2)
Vir =Vr 3

has to be solved, witf for the closure of2 and where/ stands for the velocityp is for the
pressure times the Reynolds number, &mslfor a given body force term. The parameter
o is proportional to the ratio of the Reynolds number to the time step and depends on t
scheme used for the discretization.

2.1. “Extended Influence Matrix” Technique

As is well known, as soon as the pressure and the body-force term are smooth enou
the problem (1)—(3) is equivalent to

AV —oV =Vp+f inQ (4)
Ap+V-f=0 inQ (5)
V-VIr=0 (6)
V|r = Vr. (7)

Then the difficulty comes from the fact that no boundary conditions are available fo
the pressure. But this difficulty can be overcome by splitting the problem (4)—(7) into tw
problems [20],

AV —oVi=vVpl+f inQ (8)

Apt4+V.f=0 inQ (9)

p'r =0 (10)

Vi = Vr (11)

and

AVZ —oV2=Vp? inQ (12)

Ap?=0 inQ (13)

PPlr = M=V - V) (14)

V=0 (15)

where M is an “influence operator” defined by

MPp?r =V - V3 (16)
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in such a way that
V-V +V-Vr=V-V|r=0. (17)

In Eq. (14) M~ is a generalized inverse of the operatet, since the pressure can only
be defined up to a constant. After discretization, the operktas the so-called influence
matrix. It is built during a preliminary calculation, by solving a set of elementary problem
similar to the problem (12)—(15), but witp?|- given. Thus, when using a collocation
method, the boundary valuespf are successively taken as unitary at the different boundar:
nodes to constitute the different columns of the influence matrix.

Such a splitting approach partially fails in the sense that the resulting velocity field
not perfectly divergence-free. Since [9, 10] this failure is well understood, the momentu
equation (4) being not collocated at the boundary, the body force term of the Poiss
equation (5) is polluted by an extra term that prevents from obtaining the desired resit
Moreover, as shown in [10], where the tau method (see, e.g. [8]) is also investigated, t
failure is not specific to the collocation method.

In order to outline this point and to briefly present the “extended influence matrix tecl
nique” (see [21] for an extensive presentation), let us assumeRthet—1, 1[2 (using a
mapping if necessary) and introduce thet 1) x (J 4+ 1) Gauss—Lobatto mesh associated
with the Chebyshev polynomials:

S_z.,J:{cos,(”I—I),cos(%)}, 0<i<l;0<j<J, (18)
Q.,J:{cos<nll>,cos<n>}, O<i<l;0<j <, (29)

Ty =25\ (20)

—

—

Then, with P, ; the vector space of the polynomials of maximum dedrée x andJ in
y, the Chebyshev collocation method consists in finding (P, 3)? and p in P, 3 such
as

AV—JV:Vp+f inQLJ (21)
V.V=0 inQ (22)
Vir, = Vr,,. (23)

Here we notice that Eq. (22) implies thetis perfectly divergence-free, since a poly-
nomial in P, ; which vanishes atl + 1)(J + 1) collocation points is the null polyno-
mial. Moreover, the boundary condition (23) is assumed admissible; i.e, the polynom
interpolants ofVr|r, ; at each side of2 are compatible with the incompressibility con-
straint.

In order to take into account the error that occurs in the momentum equation, let us n
introduce an additive unknown term in (P;_3)? such that

7=0 in QLJ (24)
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and rewrite the following new version of system (4)—(7):

AV —oV =Vp+f+7 inQ (25)
Ap+V.-f4+V.7=0 ing (26)
V-V, =0 27)

Vi, = Vr,,. (28)

The “extended influence matrix” algorithm is based on the splitting of problem (25)—(28)

AVI—oVi=vpl+f+7! inQ (29)
Apt4+A-f=0 ing (30)
p'lr,, =0 (31)
Vi, =Vr,, (32)
and
AVZ—oV2=VpPP+71+72 inQ (33)
ApP*+V.7=0 Ny (34)
{P%Ir s Tl ) = MTH=V -V, =7, ) (35)
V3, , =0, (36)

wherer! and 7?2 are the collocation errors which occur at the boundary nodes, where th
momentum equations are not enforced (N78.andr2 can only be computegiposterior).
M is now an influence matrix (ant1~! is a generalized inverse) defined by

MEPIr,, Tlr Y = AV - VA5, 720, ) (37)

in such a way that
V-V, + V-V, =V V|, =0 (38)
e, + 7k, =0. (39)

As presented here the dimension of the influence mattiappears to be very large. But,
in fact, this dimension can be drastically decreased because it is only the normal compon
of 7 that is required to comput@ - 7 in 2, ;. If we denote byr the normal componant
(to the boundary) of- and if we consider thap?|r, , = plr, ,, then the influence matrix
effectively involved in the computation is such that

M{p|l“|,_1’77|1“|,3} = {V'V2|F|_3512|r|,3}' (40)

Moreover, the collocation method does not need the valugsasfdt at the four corners
of the domain and so it only needs these values(at2 J — 2) boundary nodes. The
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dimension of the extended influence matrix is théh4 J — 2), i.e. twice larger than the
usual influence matrix. It can be set up in a preliminary calculation by solving the elemente
problems associated with the canonical basis of the vector §fdce —? for the boundary
node values op? andr in Egs. (33) and (34). Once the influence matrix is calculated, on
has to invert it, but as outlined later in the text one has a rank deficiency equal to fo
One way to proceed is to compute the eigenvalues and then replace the four zero va
by nonnull values, in order to project the solution onto the orthogonal complement of ti
kernel. Contrary to what is mentioned in [22], where one suggests using infinite values,
nonnull values can be arbitrary, without any incidencepgn , andz|r, ;.
Finally, the algorithm is the following:

—solve the problem (29)—(32) and, once knowing the velocity and pressure Vilds
and p!, compute the values of - V|, ; andtl|r, ;;

—from Eq. (35) compute the boundary values of the presplite and of the correction
termz|r, ;

—solve the problem (25)—(28) using the prescribed valugs gf, andz|r, ;.

Remark. The initial problem (21)—(23) only requires the knowledgd @f €2, ;, onthe
contrary of the approach, based on the standard influence matrix technique. This prop
is recovered when using the extended influence matrix approach, since the errar tert
permits us to assume arbitrary valueg at the the boundary nodes. Thus, one can simply
assumé|r, ; =0.

2.2. Calculation of the Pressure

The advantage of assumimpgn P, ; is that a divergence-free velocity fiellcan effec-
tively be produced, but this advantage goes with the drawback that the pressure is affe
with spurious modes [23]. Witf; (x) = cosi (cos! x) for the Chebyshev polynomial of
degred, these spurious modes are:

—the constant mod& (x) To(y) = 1, which is physical, since the pressure is defined up
to a constant,

—the column mod&, (X) To(y) = T, (X),

—the line modeTy(X) Ty (y) = T;(Y),

—the checkerboard mode (X) T;(y).

The nonphysical spurious modes result from the definition of the Gauss—Lobatto me
(Eq. (18)) for which(1—x?)(1—y?)T/(x)T;(y) = O (with a prime for the first-order deriva-
tive). Moreover, since the corner values of the pressure are not required by the algorit
so they can be arbitrary, one has also:

—the four corner modes.

In the framework of the “extended influence matrix technique” the spurious modes
pressure are associated with spurious modes. dhdeed, from Egs. (25) and (26), it is
clear that the spurious panps, and s, of p andr verify the set of equations [22]:

7’SD|Q|,J =0 (42)

Ap5p+V~T5p=0 inQLJ. (43)
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Then,

—Tsp= 0,0,

—Tsp= (_T|/(X)» 0),

—7sp= (0, =Tj(y)), and

—Tsp= =T/ ) Ta(y), =TI (X)T3(¥))

are respectively associated with the constant, column, line, and checkerboard modes. "
restictions to the boundary of these four spurious couples constitute a basis of the inf
ence matrix kernel. Consequentlyf has a rank deficiency equal to four, as mentioned in
Section 2.1.

Remark. When using the standard influence matrix approach, the Poisson equation (4
for psp becomes homogeneous and is no longer verified by the nonphysical spurious mod
The dimension of the kernel of the standard influence matrix then equals one.

How can we recover the pressure field? The natural idea is tofilter the nonphysical mod
but more problematic is the question of the corner modes, since vanishing the pressur
the four corners of the domain is clearly not physical. Let us first assume that the valu
p,1 <1 < 4, of the pressure at the corners are known. Then, in the Chebyshev spect
space the spurious modes can be cancelled, in order to get the filtered pressupg field
which depends on thp. The natural idea is then to produce a smooth pressure field. Thi
can be achieved by solving the following optimization problem: findgheuch that the
functional

Iy =) IVpP (44)

§I.J

is minimal. ButinQ, ; the gradient of the pressure does not depend on the pressure spuric
modes, so that the functional can be rewritten in the simpler form,

Iy => IVp'~ (45)

i

This optimization problem can be easily solved after noticing thedn read

p=po+ > pC, (46)
|

where py is the initial pressure field with zero values at the corners and wher€ taee
the polynomials which vanish everywhere(in ;, except at the corners where they take
unitary values. After filtering the four spurious modes one gets

P=p+> nC. (47)
|
VP =Vp+ Y pvg, (48)
|

where theVC| vanish inQ, ;. It is then easy to expressp'|r, ; in terms of thep, and to
compute thes@ by using a standard least square method.
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2.3. Extension to 3D Geometries with One Homogeneous Direction

When assuming that thedirection is homogeneous a discrete Fourier expansion of th
different variables can be used along this direction. Then, the 3D problem decouples i
a set of 2D complex problems. Namely, for each mode nurkb@r< k < K, one gets
the following system of equations that must solve the Fourier spectra (denojgdbthe
different variables,

AV — Vi = Ve + i+ 7 in Qg (49)

AP + Vi-fy + V- Fc =0 (50)
Vi Vilr,, =0 (51)

Vidr,, =Vir, ;. (52)

whereAg = dxx + dyy — k2 and Vi = (dy, dy, ik), with i for the square root of-1. For
each mode number one can apply the extended influence matrix algorithm and thus ob
a set of influence matrice®ty, such that

M Blr, o, Tlr, = { Vi '\7i|r.,y 220r,, }- (53)

These influence matrices, are real; they associate the real (imaginary) parts o
- R . . ~2 N
{PxIr, ;» TIr, ,} to the real (imaginary) parts ¢¥x - Vilr, ;. 72Ir, , }-
Finally, one has to mention that fkrs~ 0, the influence matrices are regular. This results
from the fact that iffx does not vanish i, ;, thenV, py is also nonnull ine2, ;. On the
contrary, ifk = 0 the 2D situation and the spurious modes of pressure are recovered.

3. MULTIDOMAIN APPROACH

In this section we present a multidomain approach, based on the use of the monodon
solver which has just been presented, to solve the GSP with the no-slip boundary condit
First we begin with the 2D case, by considering for the dorfinrectangle of large aspect
ratio. This domair is splitted, versus the direction of great lengthdfrection) into a set
of N subdomains$2,. The interface between the subdomdnpsand2, . is denoted by .

At the intersections of,, and of the boundar¥ of 2, one has the pointa, andB,, in such

a way thaitQ,,, of boundanf,, is the squaré\,_1, A,, By, By_1. Moreover we assume the
use of matching grids: for ali, the number of collocation points between the poiAts
andB is equal to § — 1).

3.1. Interface Conditions

With V = (u, v) and[ - ], for the jump at the interfacek,, the essential and natural
continuity conditions that the PDE (1) induces to use at these interfaces read:

[ully = [vly = [oxu — ply = [9xv], = 0. (54)
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Nevertheless, when taking into account that the velocity is divergence-free, the first, secol
and fourth conditions imply that is C?-continuous:

Haxu]]n + [[ayv]]n = [[axu]]n =0 (55)
[oxxully + [3xyv], = [8xxull, = O. (56)

It results that in the case of incompressible fluids the interface conditions read:

[ul, = [vl, = [Pl = [3xv], = O. (57)

Let us go to the discrete framework. When using the approach described in Section 2, 1
previous interface conditions should still hold, because the approximate velocity field

also perfectly divergence-free. But the spurious modes of pressure prevent the use of
third condition, i.e. the one involving the pressure jump.

In order to overcome this difficulty, we first tried to enforce @fecontinuity ofv rather
than theC° continuity of p, i.e. to substitute for the conditidip],, = 0 the one[a,,v], = 0.
Such an approach is quite satisfactory for solving a GSP and even the nonstationary Navi
Stokes equations at low Reynolds numbers. Unfortunately, when the Reynolds numbel
increased, oscillations of the solution generally occur at the interfagaasd then amplify,
until inducing numerical instability.

The way that we suggest and use now successfully, consists in a weak formulati
of the interface conditiofip], =0. This permits us to overcome efficiently the problem
of the spurious modes of pressure, without inducing any deterioration of the solution
the interfaced,. For the sake of clarity, this weak formulation of the pressure continuity
condition will be detailed in Subsection 3.3, after the description of the influence matri
technique that is used in our multidomain approach.

Remark. The interface conditions (57) induce ti@° continuity of the vorticity,
w = axv - ayu.

3.2. Influence Matrix Technique

Let us split the GSP into two sets Bf monodomain problem$! and P2. For the first
set, one assumes for each subdomain homogeneous Dirichlet boundary conditions and
takes into account the body-force term:

ProblemsP} read:

AV —oVl=vpl+f inQ, (58)
vV.-vi=0 in Q, (59)
Vi, =0. (60)

Once this first set of problems is solved the jurfip¥], and[d,v'],, can be computed.

For the second set of problems, one uses at the interfackés n < (N — 1), the nonho-
mogeneous Dirichlet conditior{s?, v?)|,,, which ensure the interface conditions, i.e. such
that for alln,

[p', +[p*l, =0 (61)
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[9xv™], + [8xv?], = O. (62)
ProblemsP? read:
AV? — V2 =Vp? inQ, (63)
V-V2=0 in Qn (64)
VZ|r, = Vr,. (65)

ThenV! + V2 is the solution of the complete problem.

Thanks again to the linearity property of the GSP, in order to determine the appropri
values of(u?, v2)||n, in fact equal tau, v)|,,, a new influence matrik can be introduced
such that

M{u, v)1,} = (UAP?n, [8xv?])} (66)

with U for union ovem (1 < n < (N — 1)).

The influence matriM is clearly block tridiagonal, since if the velocity is only nonnull
at the interface,, then the jump§p],, and[dxv], are only nonnull at the interfacég, In.1,
andl,_; (when they exist). Three blocks (at most) are thus associated with the intgrface
The aim is to set up these blocks, but such a task needs some attention as outlined nov

In the discrete framework, the couple, v)|,, cannot take arbitrary values R27-D,
since constraints, especially coming from the incompressibility and compatibility conditior
at the “corners”A,, and B,,, must be taken into account. This results in the fact that, tc
the contrary of what was done for the computation of the influence mattjhere one
cannot simply solve elementary problems associated with the canonical b#¥is o,
since they would involve nonadmissible boundary conditions and so would be ill-pose
The elementary problems must now be associated with an appropriate basis, spanning
admissible values ofu( v) at the interface. The compatibility constraints result from the
no-slip condition

U(An) = U(Bn) = v(An) = v(By) =0 (67)
and from the continuity equation
ayU(An) == ayU(Bn) == O. (68)

The constraints of incompressibility read:

/ udy=0, (69)
In
u ||n (S P‘jfl. (70)

This last constraint results from the fact that the polynonfialsanddyv must take their
values in the same polynomial vector space, so that their sum can identically vanish. T
vector space, at the intersection®f_; ; and P, 3_1, is Pj_1 j_1. It derives that actually
ue P j_i1andthaw € P_y ;.
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Let us first produce a basis fat;,. When knowing that
T)(x1) = (+1)! (71)

1

-2

/ Tj(y)dy = ﬁ j even O if j is odd (72)
-1 -

one can introduce the set af £ 3) polynomialse; (y) of degreej, suchthat3< j < J—1:
1. j odd andj > 3,

ej(y) = Tj(y) — Tu(y) (73)
2. jevenand > 4,
ej(y) = Tj(y) —aTx(y) — B, (74)
where
_ 3§ _2-4
“Tae-y PTagrny R

The polynomialsej (y) verify the constraints (67), (69), and (70), are clearly nonlinearly
dependent and their numbel € 3) equals the number of degrees of freedaim(1),
decreased by the four constraints.

Let us now produce a basis fof;, . With (71) and knowing that

T/(&D) = 2D (76)

the following set of § — 3) polynomials of degre¢, 4 < j < J, is well suited:

1. j odd andj > 5,

gj(y) = Tj(y) —aTu(y) — BTa(y), (77)

where

_ 9_ j2 _ j2 _ 1'
“=—g B = g (78)
2. jevenand > 4,

e (y) = Tj(y) — aTo(y) — BTa(Y), (79)

where

j2 j2

a=1-— B= (80)
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The polynomial®;j (y) now verify the constraints (67) and (68) and constitute an appropriat
basis forv|...

In order to compute the componentswf, andv|,, in the bases that have just been
defined, if appears that only 2 — 3) relations are prescribed from Egs. (61) and (62). This
may be surprising, since the number of collocation points betwgeand B, is equal to
(J — 1). Concerning the continuity of the pressure, it is shown in the next subsection tf
the weak formulation of the pressure jump only yields<{3) relations. Concerning tr@!
continuity ofv, (J — 3) relations are only required, as explained below.

At the “corners” A, and B, one has the following compatibility conditions, resulting
from the no-slip boundary condition and from the continuity equation:

dyxv(An) = dyxv(Bn) = 0. (81)

These compatibility conditions permit us, in the discrete framework, to calculate the valu
of dxv at two collocation points, once we know their values at the-@3) other ones. It
results that Eq. (62) has only to be expressed at 8) collocation point. Thus, we do not
consider the collocation points neares®pandB,. Consequently, the influence matik

in Eq. (66) is square, each of its block being of dimensioh 2 3), and in this equation
(u, v)|;, must be viewed as the componentsif andv|,, in their specific bases.

3.3. Weak Formulation of the Pressure Continuity Condition

When restricted to an interfadg, [ pll, is a polynomial inP;, affected by the following
spurious modes of pressure:

—To(y) = 1 (the constant physical mode)

—Ti(y)
—the A, and B, “corner” modes, i.e. the two polynomials which vanish at all the collo-

cation points of the interfach,, except at the pointé,, and B,, where they take unitary
values.

Let us introduce the following weak formulation of the conditiiqef, = O:

1. joddand] > j > 3,

J 1Ty = iy de=0 (82)
2. jevenandl > j > 4,
J TPITy ) = Ty de =0 (83)
where
du=(1-y») "2dy. (84)

With such a measure the chebyshev polynomials are orthogonal. Consequently, the
rious part of] p[, spanned by the polynomialg (y) andTo(y) is cancelled. Moreover, the
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weighting functions are also orthogonal to the pressure corner modes, because they v
ish at pointsA, and B, from property (71). This can be checked from the Gauss—Lobattc
guadrature formula, which is exact for polynomials of degree upde<2) (see, e.g. [23]).

Thus, formulas (82) and (83) constitute a set &f(3) equations expressing a weak
formulation of the interface conditidip],, = 0 and got rid of the spurious modes of pressure
(including the physical constant mode). From the Gauss—Lobatto quadrature formula,
reads

J-1

> 1Pl (Ym) (Ty(Ym) = Ti(ym) =0, 3<j < J. (85)

m=1

with | =1if j is odd and = 2 if j is even. Knowing thal (ym) = cosmwjm/J), this
set of equations can be expressed in matrix form by introducing a matricial operatbr
dimension(J — 3) x (J — 1), the elements of which can be easily identified as

i I
Hi_om= cos(@) — cos(?) , (86)

where3< j<Jandl<m=<J-1.

3.4. Extension to 3D Geometries with One Homogeneous Direction

With Vi = (O, Dk, wy), for the spectrum o¥, let us first consider the cake= 0 which
is very similar to the 2D situation.

If k = 0, the operatoF, readsVy = (dx, dy, 0). Then, considering again the GSP, one
observes that the equation faog is not coupled to the equations fog andvp. One can
thus apply forlip andugp the approach used previously in the 2D situation and consider inde
pendently the variabley which solves an elliptic Helmholtz equation. In the multidomain
context, the natural procedure is then to enforcetheontinuity at the interfaces. This is
done by using a block tridiagonal influence matkity such that

My{U@o)11,} = {U([3x@3]h) }- (87)

The different blocks of this influence matrix can be built easily in a preliminary calculatior
by solving for each interfack, the elementary problems associated with the canonical basi
of R, Then, one computes,in two steps: the first one considers in each subdomain
homogeneous boundary conditions and the second one takes into account the vajies o
at the interfaces.

Remark. When an advection-diffusion equationis associated to the Navier—Stokes equ
tions, e.g. for the temperature, at each time step one has to associate to the GSP an ell
Helmhotz equation. This elliptic Helmholtz equation can be solved (for all mode number:
in the 3D situation considered in this section) as it has just been describeg.for ~

Letus now consider the cake# 0, which is less staightforward. The interface conditions
that must be enforced are t8& continuity ofdi, and py, without the requirement of a weak
formulation, and theC® continuity of vk andwy. But as in the 2D case, one can easily
observe that the continuity equation induces thais actuallyC? continuous. It derives
that the vorticity vector and stress tensor spectraCireontinuous.
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Thus, in 3D with one homogeneous direction, we are led to introduce influence matric
My, such that

Mi{U(Oi, B, 1011, } = {U([9x0ZT. [9xitbE]n. [PETL) }- (88)

One notices that the variabley is used in such a way that all the operators of the GSF
become real. Consequently, the matribgsare also real and the determinations of the real
and imaginary parts dfJ(Gy, Uk, itk)]i,} are not coupled. As the matriM (and M), the
matricesMy are block tridiagonal, with three blocks associated with each intetface

As in the 2D situation, the problem is now to set up these blocks, but no new difficul
arises and, on the contrary, one difficulty falls. Similarly to the 2D case (Eqgs. (67) and (68
one has some constraints which result from the no-slip condition, expressed at the corn

Uk (An) = Uk (Bn) = tk(An) = 0k(Bn) = wi(An) = wk(Bn) =0, (89)
and from the continuity equation,

But to the contrary of the 2D situation, the incompressibility constraints (69) and (70) r
more exist, since

—the velocity fields associated with the mode numberg 0 automatically satisfy
Eq. (69),
—in the spectrum oV - V the termikwy which is in P, ; now appears.

One observes thdl|,, andwy|,, are simply polynomials ifP; which vanish at points
An and B,. In this case using the basis (73), (74) is useless and one simply considers
elementary problems associated with the canonical basts of. For |, the constraints
are the same as the ones met in the 2D situation, so that the basis (77), (79) has to be
and in Eq. (88|, must be viewed in this basis. On the other hand, similarly to Eq. (81
one has the compatibility conditions

8y><1A)k(An) = 8y><f)k(Bn) =0 (91)

which state that the collocation point valuesgfi, can only be arbitrary at — 3 collocation
points, so that the continuity 8f 0« should not be imposed everywhere. We do not collocate
these equations at the points nearest of the boundary. If results that the dimension of ¢
block of influence matriceMy is (3J — 5).

4. NUMERICAL TESTS

In order to check the capabilities of the present Stokes solver, two studies have be
carried out. In the first one which considers the Stokes problem (1)—(3) in a cavity of asp
ratio equal to 16, our aim is to produce some quantitative results when varying the me
refinement and the subdomain number. The second considers a RayleigingBroblem
in a cavity of aspect ratio equal to 8.
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4.1. Stokes Solver Accuracy

At first some analytical fields\{, p) have to be produced. The results obtained from
the Stokes solver will then be compared to them. The analytical velocity field must b
divergence-free, null at the boundary, and homogeneous versusatkis. In order to
support these constraints, in the dom&ie=]0, L[ x]0, 1[x]O0, L,[, let us introduce the
vector:

=911, (92)

where
¥ = CxX2(x — Ly)2y?(y — 1)? cog11x) cog7y) (1 + cos(62L—”z)> (93)

and define the velocity fielf as the curl ofp:V = V x 1. In (93) C is a normalization
factor chosen to induce mg¥/|) ~ 1.
Concerning the pressure, we assume:

p = 0.5cog7x) cog11y) (1 + cos(Bi—nz>> . (94)
z
From the analytical forms df and p and for a given value of the parameterusing the
symbolic calculation (MAPLE software), the analytical expression of the body force terr
is derived (see Egs. (1)—(3)).

Allthe calculations have been performed for the following set of the different parameter
Ly=16,L,=6,C=1/700Q ¢ = 10%, and, concerning the mesk,=8, J ={8, 16, 32},
andl = 16J. In fact, the valuel = 8 is too small to get satisfactory results, wher@as32
yields the machine accuracy for the velocity, except for the highest W82 subdo-
mains. Moreover, let us emphasize that in the Fourier spectral space only the mode numt
0, 3, and 6 of the analytical solutions are different from zero, in such a way thit$e8,
the accuracy defaults can only result from the parameteand N. The total number of
collocation pointsis K (J + 1)(I + 1).

The numerical results are given in Tables 1 and 2, where the mean-quadratic and maxir
errors are mentioned for the modulus of the velocity and for the pressure for different coupl
(J, N). (N.B., For the couples (2, 32) and (4, 32), the memory requirements were too lar
for the T3D processors.)

Itis interesting to observe that the errors are slowy increasingMithtil the number of
collocations in each subdomain become too small. Indeed, Wit 6 andN = 32, there

TABLE 1
Mean-Quadratic and Maximal Errors for the Velocity Modulus

N 2 4 8 16 32
J=16 1.39E-8 1.78E-8 2.03E-8 1.32E-7 1.36E-4
4.88E-8 4.88E-8 4.88E-8 5.45E-7 4.58E-4
J=32 6.06E-15 4.81E-15 3.42E-12

2.13E-14 2.13E-14 1.43E-11
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TABLE 2
Mean-Quadratic and Maximal Errors for the Pressure

N 2 4 8 16 32
J=16 1.65E-5 2.37E-5 2.82E-5 4.78E-4 0.44
6.28E-5 6.76E-5 7.71E-5 1.34E-3 0.99
J=32 1.69E-7 6.01E-6 1.46E-5
1.94E-7 6.87E-6 1.66E-5

are only nine points along theaxis in each subdomain. For smaller value®othe error
is essentially governed by the largest value ofxtkepace step, which does not depend on
the number of subdomains.

One can also observe in Table 2 that the computation of the pressure is rather accurate
that the spurious mode-cleaning algorithm proposed in Section 2.2 is efficient. Neverthele
with J =16 andN = 32, the results on the pressure are no longer acceptable, whereas
results for the velocity are still reasonably satisfactory.

Remarkl. In some situations, the use of subdomains can improve the accuracy of t
numerical results, especially, when a stiff gradient occurs between two subdomains or
subdomain is affected to the approximation of a boundary layer [24]. Consequently, it ¢
be interesting to match the subdomains with the expected solution.

Remark2. When using for the mode numbet= 0 the interface conditiofdxxv], =0,
rather than the weak formulation pp],, = 0, one obtains results very similar to those of
Tables 1 ad 2, as shown indbles 3 and 4, respectively.

4.2. Rayleigh—Bnard Convection

The multidomain GSP solver described in this paper has been used for solving
Boussinesgq—Oberbeck equations in a 3D cavity such,as 8 andL, = 2.8, the gravity
being parallel to the direction. The Rayleigh number is taken Re8000 and the Prandtl
number is the air's, P& 0.71. The boundary and initial conditions are defined below.

Boundary conditions. For the velocity we assume the no-slip boundary condition. Fol
the temperature, we assume Dirichlet conditions at the bottom and at the top of the c
ityy, T =1 andT =0, respectively, in nondimensional form and homogeneous Neumar
conditions (adiabaticity condition) at the lateral walls.

TABLE 3
Mean-Quadratic and Maximal Errors for the Velocity Modulus

N 2 4 8 16 32
J=16 1.39E-8 1.78E-8 2.03E-8 3.65E-7 5.83E-3
4.88E-8 4.88E-8 4.88E-8 1.43E-6 3.56E-2
J=32 9.20E-14 4.50E-14 1.51E-11

2.37E-13 1.55E-13 3.60E-11
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TABLE 4
Mean-Quadratic and Maximal Errors for the Pressure

N 2 4 8 16 32
J=16 1.65E-5 2.37E-5 2.82E-5 8.80E-4 0.66
6.28E-5 6.76E-5 7.71E-5 2.58E-3 1.62
J=32 1.69E-7 6.01E-6 1.46E-5
1.94E-7 6.87E-6 1.66E-5

Initial conditions. The fluidis assumedto be at rest. The temperature is in the conductiv
state, i.e. linearly variable from the bottom to the top of the cavity. But to induce a 3D flow
this temperature profile is perturbated with the function

e = —103sin(rry) cos(g8 <x + cos<f42) ) ) . (95)

Such a perturbation, which is periodicarand which vanishes at the top and at the bottom
of the cavity, induces in the box ]8[x]0, 1[x]0, 2.8[ a set of 10 rolls, the axis of which
are distorted following a sinusdél variation of amplitude 1.

The Boussinesq—Oberbeck equations are discretized by using a second-order backv
Euler approximation for the diffusive terms and a second-order Adams—Bashforth extrar
lation for the advective terms. This yields, at each time step, a GSP, coupled with an ellip
Helmholtz equation, for the temperature. This temperature equation is solved at firstin su
a way that the body-force term of the momentum equation can be calculated.

For the computation we used eight subdomains and the following mesh in each of the
16 x 16 x 48. The time-step was equal to&103.

InFig. 1, where the vertical velocity in the median plane L /2 at different times is vi-
sualized, one observes the transition of the solution with 10 rolls to a solution with 8 rolls fc
which the wave number is approximately the critical one. Moreover, it was observed that tf
3D flow becomes quickly 2D, so that, despite the initial perturbation of the temperature fiel
no 3D instability occurs. Especially asin [25], the skewed varicose instability (see, e.g., [26
was not observed, probably due to a too strong confinement of the flow. The only instabili
that occursis thus the Eckhaus instability, which results from the interaction of two neighbc
ing rolls, the wave numbers of which are greater and smaller than the critical wavenumbe

Remark. When using for the mode numbler= 0 the interface conditiofdyxv], = O,
one obtains the same convective flow, the relative differences between the extrema of
vertical velocity being at mogD(10-5).

The same behavior was obtained for 2D calculations, done on a T3E computer, indep
dently of the number of subdomairls:= {2, 4, 6, 8, 10}. For the perturbation of the initial
conductive temperature field we used

e = —10 3sin(ry) cos(éé) (96)

in order to induce 10 rolls in the cavity. For all the calculations the same transition from 1
rolls to 8 rolls was observed. The quasi-stationary vorticity fields obtained at tin20
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FIG. 1. Vertical velocity at times = 1.2,t = 1.6,t = 2, andt = 2.4 (nondimensional values associated
with the thermal diffusivity).

for the two extrema of the subdomain number are shown in Fig. 2. For all the consider
values ofN, the patterns are identical and the relative differences between the extrema of
vorticity are O(10-°), after spectral interpolations on a unique regular grid. Moreover, th
transition from 10 to 8 rolls agrees with the selection law obtained in [25], which indicate
that for the present study the only stable patterns should show 7, 8, or 9 rolls.
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FIG. 2. \orticity at timet = 20, computed witiNN = 2 andN = 10 subdomains.
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FIG. 3. Stream-function at time = 20, for the three stable patterns.

It was interesting to check if the patterns with 7 and 9 rolls would be obtained witt
our multidomain solver. By changing the perturbation of the initial temperature field, thes
patterns have effectively been obtained. In order to get the 9 (or 7) roll configuration, w
simply induced such flows by substituting in Eq. (96) the mean width of a roll to the 0.
value. In Fig. 3 are shown the quasi-stationary stream-function, obtained at£r26 , for
the three stable configurations. When one iduces the 6 roll configuration, then one obser
a transition yielding 8 rolls. Thus, for symetry reasons, the 6 and 10 roll configuration
finally yield, with a gain or a loss of two rolls, exactly the same convective flow. For thes
calculations we usel = 8 subdomains.

Remark. In order to have an idea of the CPU time with respect to the number of subdc
mains, we give in Table 5 the CPU time needed by the most consuming processor for t
preliminary calculations and for the simulation on the base of 1000 time steps. These rest
are not really favorable, since the total CPU time, i.e. when taking into account the numb
of processors, is nearly the sameMs> 4 and even begins to increase fér=10. Such
poor results were expected for the test-case considered, which does not require many cc
cation points in each subdomain. In this situation, the CPU time needed by the computati
of the interface velocity values, with exchanges of data between the different processc

TABLE 5
CPU Time/Processor for the Preliminary Calculations and for 1000 Simulation Time Steps

N 2 4 6 8 10

Prel. 18.57 3.68 1.66 1.00 0.82
Sim. 62.86 22.26 14.46 10.66 9.34
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is relatively important. This is no-more true when fine meshes are required, i.e. when
multidomain approach is fully justified.

5. CONCLUSION

We have presented a multidomain procedure for solving in 3D cartesian geometries
high aspect ratio with one homogeneous direction, the generalized Stokes problem (G
which results from the finite difference approximation of the incompressible Navier—Stok
equations. The main property of this Fourier—Chebychev spectral solver is that the discr
formulation of the GSP is exactly solved in such a way that the resulting velocity field |
perfectly divergence-free. This is obtained in the following manner:

(i) in each subdomain, extended influence matrices are used to compute the bounc
values of the pressure when taking into account that the equations are only enforced at
internal collocation points,

(ii) the velocity components at the interfaces of the different subdomains are comput
by using block tridiagonal influence matrices, set up by using appropriate bases in orde
enforce the compatibility conditions resulting from the incompressibility constraint.

Moreover, the problem of the spurious modes of pressure has been revisited and a |
method has been proposed to recover the pressure field.

The computer code has been parallelized for a T3D (T3E) supercomputer and test
sults have been produced to outline that no drastic loss of accuracy occurs when
number of subdomains is increased as soon as the number of collocation points in €
subdomain is sufficiently high. Finally, the capability of the code has been pointed o
by solving a 3D Rayleigh—&ard problem showing an Eckhaus instability and 2D nu-
merical experiments have been achieved to demonstrate the credibility of the numers
results.
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